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Abstract: An optimal maximal ratio combiner (MRC) based on the expectation-maximization (EM) algorithm is devel-

oped for noisy constant envelope signals transmitted over a Rayleigh fading channel. Instead of using a transmitted pilot 

signal with the data to estimate the combiner gains, the EM algorithm is used to perform this estimation. In the developed 

MRC, estimation of the transmitted data sequence is performed also by the EM algorithm. Estimation using the EM algo-

rithm provides an iterative solution to the maximum likelihood (ML) approach. Therefore, the resulting receiver is opti-

mum and does not suffer from the difficulties resulted from direct application of the ML procedure. One of these difficul-

ties is the computational complexity which depends exponentially on the data sequence length. Introducing an iterative 

structure in the developed MRC achieves a linear computational complexity and enables efficient data extraction by the 

Viterbi algorithm when trellis coding is used. 
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1. INTRODUCTION 

 It is well known that diversity is an efficient method for 
combating fading effects [1]. Several combining techniques 
have been proposed to illustrate the improvement in signal 
statistics [2, 3]. The main diversity combining techniques are 
selection diversity, equal gain combining and MRC. Selec-
tion diversity is the simplest of these techniques [4, 5]. In 
this technique, the receiver monitors the signal-to-noise ratio 
of all branches and selects and uses the information from the 
branch with the largest SNR. Equal gain combining requires 
the receiver to coherently sum the signals received through 
all channels in order to increase the available signal-to-noise 
ratio at the receiver [6]. MRC is an optimum spatial diversity 
strategy to reduce the signal fluctuation caused by fading [7]. 
Maximal ratio combining always perform better than either 
selection diversity or equal gain combining because it is an 
optimum combiner. The information on all channels is used 
with this technique to get a more reliable received signal. 
This method is known to be theoretically optimal for slow 
fading in the sense that it gives the best statistical reduction 
of fading in any linear diversity combiner [8-10]. In [11], it 
is proved that an MRC operating on correlated branches is 
optimal even if the branch signals are weighted as though 
they are independent. However, the fast fading channel in-
troduces additional pulse distortion which must be removed 
to avoid inter-symbol interference [12]. This problem is 
solved in [13] and the performance of the MRC in this case 
is improved. The performance of the MRC is affected by 
several factors; one of them is the error in determining the 
gain factor of the diversity branches of the MRC. In [14], 
some results regarding the effects of the gain factor estima-
tion error on the performance of MRC are reported. Also, it  
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is reported in [14] that a pilot signal, transmitted with the 
data, can be used to provide an estimate of the combiner gain 
factors.  

 In this paper, the EM algorithm is used to estimate the 

gain factors of the combiner without using pilot signal 

transmission. Also, the EM algorithm is used to recover the 

transmitted sequence. The signals are assumed to have con-

stant envelope (like MPSK), transmitted over a Rayleigh 

fading channel and contaminated with additive white Gaus-

sian noise (AWGN). The developed MRC has an iterative 

form which reduces the complexity of the ML diversity re-

ceiver that arises from the difficulty of performing the 

maximization of the likelihood function. This difficulty be-

comes significant when M-ary signaling with long sequences 

is transmitted. In this case, exhaustive search is used to ob-

tain this maximization. For example, for a sequence of 

length K transmitted on L channels with M-ary signaling, the 

required number of operations resulted from direct applica-

tions of ML approach is
KLM . This number is reduced to 

LM using the developed MRC.  

 The rest of the paper is organized as follows. Section 2 

provides the derivation of the developed MRC. In section 3, 

simulations are presented to demonstrate the performance of 

the MRC. Finally, conclusions are presented in section 4.  

2. MRC DERIVATION 

 In this section, the gain factors of the MRC in addition to 

the estimated sequence are estimated using the EM algo-

rithm. The transmitted signal is received over L statistically 

independent and identically distributed ( i.i.d) fading chan-

nels, each of them being a slowly varying flat fading as 

shown in Fig. (1). In this figure, Lltzl ,...,2,1);( = , is the set 

of received replicas of a signal, where l is the channel index 

and 
lD  is the l-th channel fading parameter. The fading pa-
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rameter lj

ll eD =  is a zero mean complex Gaussian ran-

dom variable with a Rayleigh distributed amplitude 
l
 and 

uniform distributed phase angle 
l
. The variance of the ran-

dom variable 
lD  is assumed to be 2

l
. Furthermore, the 

fading signals are perturbed by a zero mean complex AWGN 

with variance 2/oN . The noise is assumed to be statistically 

independent from channel to channel and independent of the 

fading amplitudes. Moreover, it is assumed that the noise has 

equal power at each branch. For each diversity channel, the 

signal at the receiver input has the form: 

)()()( tntxDtz lll +=             (1) 

where )(tnl
 is a zero mean additive white Gaussian noise 

process and )(tx  is a constant envelope signal. After 

matched filtering and sampling, the sampled received signal 

)(, kz kl
can be written as  

klklkl nxDz ,, +=            (2) 

where 
kln ,

 is a sample of zero-mean complex Gaussian 

noise, and 
kx  is the k

th
 symbol of the received signal. After 

suitable normalization and without loss of generality, it is 

assumed that for all k, 0)( =kxE , E xk

2

( ) = 1 , and that 

the variance of 
kln ,

 is 2/oN . Let a length K of the signal 

symbol sequence
Kxxx ,...,, 21

, be represented by the vector 

x, then the received vector of the l
th

 iteration channel, 
T

Kllll zzz ),...,,( ,2,1,=z , can be expressed as:  

lll D nxz +=             (3) 

where T

Kllll nnn )...,,,( ,2,1,=n is a zero-mean i.i.d, com-

plex, Gaussian noise vector. The likelihood function (LF) of 

the data 
lz , normalized to the probability density function of 

the noise, is given by: 
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 Direct application of the ML procedure is to maximize 

=

=

L

l

ll Dff
1

),|(),|( xzxDZ  with respect to the fading 

vector D and the data vector x, where T

LDDD )...,,,( 21=D  

and T

L )...,,,( 21 zzzZ = . This maximization can not be 

computed in closed form. However, one of the available so-

lutions to this problem is to obtain D̂  for a given data se-

quence and then evaluate ),|( xDZf  for all possible data 

sequences and choose the data sequence that maximizes it. 

For M-ary signaling, the required number of operations to 

perform this search is 
KLM . This exhaustive search is time 

consuming and complicated. Therefore, it is required to de-

velop another receiver that has a smaller complexity than this 

receiver. We propose the MRC receiver shown in Fig. (2), in 

which the combiner gains and the data are estimated using 

the EM algorithm. This receiver achieves a linear computa-

tional complexity. In ideal practical MRC, each matched 

filter output is multiplied by the corresponding combiner 

gain factor. The effect of this multiplication is to compensate 

for the phase shift in the channel and to weight the signal by 

a factor that is proportional to the signal strength. Thus a 

strong signal carries a larger weight than a weak signal. In 

the following, we will use the EM algorithm to derive this 

receiver.  

Using the relation

=

=

K

k

klklll xDzD
1

2

,

2
xz , the like-

lihood function (LF) of the data 
lz , can be simplified as 

( )=
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o
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Fig. (1). Channel model. 
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where * denotes the complex conjugate. For constant enve-

lope signals the second term in (5) does not affect the maxi-

mization and can be dropped. In our problem the combiner 

gains are given by 
ll Dg ˆˆ = ; Ll ,...,2,1= , where 

lD̂  is the 

estimated channel parameter at the l
th

 branch. To use the EM 

algorithm, we need to specify the incomplete and the com-

plete data. In our problem, the incomplete data is the 

KL observation matrix Z and the complete data is chosen 

to be ),( DZV = . Since x and D  are independent, the con-

ditional density function of the complete data V given x is 

given by: 

)|(),|()|,()|( xDxDZxDZxV ffff ==         (6) 

 Then, at the i
th

 iteration, the E-step of the EM algorithm 

can be written as: 

( ) ( ))()()( ˆ|)|(logˆ|),|(log)ˆ|( iii fEfEU xZ,xDxZ,xDZxx +=      (7) 

where 
)(ˆ i

x  is the most recent sequence estimate at the i-th 

iteration of the EM algorithm. The conditional expectation in 

(6) is with respect to the conditional density of the complex 

combiner gain factors vector D  given the incomplete data 

and assuming that )(ˆ i
xx = . The second term in (7) is con-

stant because it is not a function of x and can be dropped 

without affecting the maximization step. The conditional 

density ),|( xDZf  is given by: 

( )
= ==

==

L

l

K
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lkkl
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ll Dxz
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Dff
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exp),|(),|( xzxDZ   

              (8)  

 Using (7), the E-step of the EM algorithm at the i
th

 itera-

tion can be written as: 

( )
= =

=

L

l

i
K

k

lkkl

i DxzEU
1

)(

1

,

)( ˆ|Re)ˆ|( xZ,xx         (9) 

 The conditional expectation in the E-step is with respect 

to the conditional density of the complex fading parameter 

lD  given the incomplete data 
lz  and assuming that )(ˆ i

xx = . 

This E-step can be written as: 

U(x | x̂(i ) ) = Re zl ,k xk D̂l
(i )

( )( )
k=1

K

l=1

L

       

(10)

 

where D̂l
(i )

= E Dl | zl , x̂
(i )

( )  is the conditional mean of 
lD  

given the incomplete data 
lz  and assuming that )(ˆ i

xx = and 

it is independent of x. In the following, the expressions of 
)(ˆ i

lD  will be derived and requires obtaining the conditional 

density )ˆ,|( )(i

llDf xz  which can be expressed as: 

)()ˆ,|()ˆ,|( )()(

l

i

ll

i

ll DfDfDf xzxz =        (11) 

 Using (8), the conditional density )ˆ,|( )(i

ll Df xz  can be 

written as: 

( )=
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K

k

l

i

kkl

o

i
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Df
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,

)( ˆRe
2

exp)ˆ,|( xz        (12)  

 Knowing that 
lD  is a zero mean complex Gaussian ran-

dom variable with variance 2

l
 and by substitution of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The developed maximal ratio combiner. 
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)ˆ,/( )(i

ll Df xz  in (11), the expression of )ˆ,|( )(i

llDf xz  

can be written as: 
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which, after some algebraic manipulations, can be written as:  
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where c is a constant which needs not to be calculated. Then 

from (14), the gain factor of the l
th

 branch of the MRC is 

given by: 

ĝl
(i )

= D̂l
(i )

= E Dl | zl , x̂
(i )

{ } = 2 c zl ,k x̂k
(i )

k=1

K

      
(15)

 

where 

o

l

c
N

2

=  is the average signal to noise ratio per 

channel. It is clear that the estimate of the combiner gain 

factors is optimum since, )(ˆ i

lD  is obtained by maximizing the 

LF given by (14). Also, from (15) it is noted that, the estima-

tion of the combiner gain factors is determined without send-

ing a pilot signal with the data. They are function of the re-

ceived signal, the estimated symbol sequence, and 
c

. Un-

fortunately, 
c

 is not known in practice and needs to be es-

timated at the receiver. There are several methods to esti-

mate
c

. A blind (does not require a training sequence) and 

online method for fading channel with L branches is de-

scribed in [15]. In this method, 
c

 is derived using statistical 

ratio of certain observables over a block of data. The method 

is derived for a Nakagami-m channel and can be used in a 

Rayleigh fading channel as special case by using m=1.  

 Now, we obtain the symbol sequence at the i
th

 iteration 

which is derived by applying the E-step of the EM algo-

rithm. Using (10) and (15), the E-step at the i
th

 iteration can 

be written as: 

U(x | x̂(i ) ) = Re zl ,k xk ĝl
(i )

( )( )
l=1

L

k=1

K

       

(16)

 

 In this case, the inner summation in (16) represents the 

combined diversity channel output at the i
th

 iteration multi-

plied by 
kx  as shown in Fig. (2). That is, the combined di-

versity channel output at the i
th

 iteration can be viewed as 

)(

1

,

)( ˆˆ i

l

L

l

kl

i

k gzr
=

=  which is equivalent to MRC [1]. Now the 

maximization step of the EM algorithm is carried out by 

maximization of U(x / x̂(i ) ) = Re r̂k
(i ) xk( )( )

k=1

K

. Note that 

maximizing )ˆ,( )(iU xx  with respect to the sequence x is 

equivalent to maximizing each symbol in the sum i.e. mak-

ing symbol by symbol decision. Then, the M-step of the EM 

algorithm is given by: Compute for Kk ...,,2,1=  

( )

k

L

l

i

lkkl

i

k

x

gxzx
=

+
=

1

)(

,

)1( ˆRemaxargˆ
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which can be efficiently performed using Viterbi algorithm 

when trellis coding is used. The algorithm starts at i=0 and 

assumes the initial value for the gain factors 

Llgl ...,,2,1,ˆ )0(
= . Then, we obtain )1(ˆ +i

kx  using (17) and 

we use its value in (15) to obtain the gain factors at the next 

iteration. These steps are repeated until the algorithm con-

verges.  

3. COMPUTER SIMULATIONS AND RESULTS 

 In this section, the theoretical developments presented 

above are validated by simulation experiments. The accuracy 

of the estimation algorithm of the MRC gain factors is dem-

onstrated. Moreover, the performance of the developed MRC 

is evaluated and is compared with the MRC which uses pilot 

symbols for channel estimation. The performance is meas-

ured in terms of the bit error probability as a function of the 

average signal to noise ratio per channel ( c ). The signal 

used in the simulations is BPSK. The signal is transmitted on 

a Rayleigh flat fading channels using independent complex 

Gaussian random generators. The carrier frequency of the 

signals is 0.5 MHz and the sampling frequency is 5 MHz. 

The number of fading channels is varied from 1 to 7. The 

number of samples is 4096. The signals are added to a gen-

erated white Gaussian noise with variance 2/0N . 

3.1. Performance Evaluation of the Estimation Algorithm 

 First, the accuracy of the estimation algorithm is demon-

strated in Figs. (3, 4, and 5). Figs. (3 and 4) are plotted at the 

third iteration of the algorithm. The true and estimated val-

ues of three MRC gain factors 
1ĝ , 

2ĝ , and 
3ĝ  are 

shown in Fig. (3). In this figure, the estimated values corre-

spond to the dashed lines while the true values correspond to 

the solid lines. This figure shows that as 
c

 increases, the 

values of the estimated gain factors 
1ĝ , 

2ĝ , and 
3ĝ con-

verge to their true values. The plot of the normalized mean 

square error (NMSE) of estimation of 
1ĝ , 

2ĝ  and 
3ĝ  is 

shown in Fig. (4). The results show that, at low SNR, the 

NMSE is high because the noise dominates the performance 

of the estimator and as SNR increases, the NMSE decreases. 

The convergence of the algorithm for SNR=-1 and 5 dB is 

illustrated in Fig. (5). In this figure, the true and estimated 

values of 
1ĝ , 

2ĝ  and 
3ĝ  are plotted versus the number 

of iterations. This figure shows that the estimation algorithm 

converges to the true value within two or three iterations. 

This figure also shows that at SNR=5 dB, the convergence to 

the true values is faster than the convergence at SNR=-1 dB. 

For example, at SNR=5 dB, the estimated curve for 
2ĝ  
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converges within three iterations while at SNR=5 dB, it con-

verges within two iterations.  

Fig. (3). True and estimated values of the absolute of the combiner 

gain factors 
1g , 

2g , and 
3g  versus the average signal to noise 

ratio per channel. 

 

Fig. (4). Normalized mean error estimation of the absolute of the 

combiner gain  factors 
1g , 

2g , and 
3g . 

 

3.2. Performance Evaluation of the Developed MRC 

 Now, the performance of the developed MRC is investi-

gated. The bit error probability versus the signal to noise 

ratio per channel is shown in Fig. (6) for independent diver-

sity with L=1, 3, 4, and 7 branches. This figure is also plotted 

at the third iteration of the algorithm. The figure shows that 

as the average signal to noise ratio per channel increases, the 

bit error probability decreases. At low
c

, the noise domi-

nates the performance of the MRC and the bit error probabil-

ity becomes high. When 
c

 increases, the effectiveness of 

diversity becomes significant, that is, higher diversity (as L 

increases) can significantly reduce the bit error probability 

which illustrates the advantage of the diversity. For example, 

at L=1, the MRC requires 12 dB SNR to obtain a bit error 

probability 
410 but this value of bit error probability can be 

reached at SNR=1 dB for L=7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi g. (5). True and estimated values of the absolute of the combiner 

gain factors 
1g , 

2g , and 
3g  versus the number of iterations. 

 

 

 

 

 

 

 

Fig. (6). Performance of the proposed receiver. 

 

 The performance comparison between the proposed 

MRC and the MRC which uses pilot symbols to estimate the 

channel is evaluated in terms of bit error probability versus 

c
. In MRC with pilot aided channel estimation, the ML 

algorithm is used to recover the transmitted data; therefore 

we call it MRC/ML. The MRC/ML has optimum perform-

ance and is considered as a reference receiver. In MRC/ML, 

the least square algorithm is used to estimate the fading 
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channel parameters. The number of the used pilot symbols is 

50 which is found to obtain a reliable estimate. The outputs 

of the matched filters are multiplied by the complex conju-

gate of the resulting channel parameters estimation. The real 

part of the combined weighted matched filters outputs is 

maximized to decide the transmitted sequence. The results of 

the comparison are shown in Fig. (7). This figure shows that 

there is a gap in performance between the MRC/ML and the 

proposed MRC. The MRC/ML offers a performance gain 

over the proposed MRC. For 7=L  and a bit error probabil-

ity 
410 , the value of this gap is around 0.5 dB. The reason 

for this gap is that there is a loss in performance in the pro-

posed MRC due to the iterations of the EM algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Performance comparison of the proposed MRC and the 

MRC/ML. 

 

4. CONCLUSIONS 

 EM-based MRC has been derived for noisy constant en-
velope signals. The signals are received through flat fading 
multi-channel. The EM algorithm estimates the gain factors 
of the MRC and also the transmitted sequence. Due to its 
iterative nature, the derived MRC has lower complexity than 

the ML diversity receiver. It MRC has a linear computational 
complexity rather than the exponential complexity achieved 
by the ML diversity receiver. Although, the developed MRC 
has an iterative nature, it converges within two to three itera-
tions but it has a performance loss about 0.5 dB from the 
MRC with pilot aided channel estimation.  

REFERENCES 

[1] Y. Ma, Q. Zhang, R. Schober, and S. Pasupathy, “Diversity recep-

tion of DAPSK over generalized fading channels”, IEEE Trans. 
Wireless Commun., vol. 4, pp. 1834-1846, July 2005. 

[2] T. Eng, N.Kong, and L.B.Milstein, “Comparison of diversity com-
bining techniques for Rayleigh-fading channels”, IEEE Trans. 

Commun., vol. 44, pp. 1117-1129, Sept. 1996. 
[3] W. Jingxian, and X. Chengshan, “Optimal diversity combining 

based on linear estimation of rician fading channels”, IEEE Trans. 
Commun., vol. 56, pp. 1612-1615, Oct. 2008. 

[4] N. Kong, and L. Milstein, “SNR of generalized diversity selection 
combining with nonidentical Rayleigh fading statistics”, IEEE 

Trans. Commun, vol. 48, pp. 1266-1271, Aug. 2000. 
[5] N. Beaulieu, “Switching rates of dual selection diversity and dual 

switch-and-stay diversity”, IEEE Trans. Commun., vol. 56, pp. 
1409-1413, Sept. 2008. 

[6] D. Zogas, G. Karagiannidis, and S. Kotsopoulos, “Equal gain com-
bining over Nakagami-n (rice) and Nakagami-q (Hoyt) generalized 

fading channels”, IEEE Trans. Wireless Commun., vol. 4, pp. 374 - 
379, March 2005. 

[7] T. Lin, “Maximal ratio combining for iterative multiuser decod-
ing”, M. S. thesis, University of south Australia, Australia, 2005. 

[8] J. Proakis, Digital Communications, New York: McGraw-Hill, 
2000. 

[9] A. Annamalai, “Micro diversity reception of spread spectrum sig-
nals on Nakagami fading channels”, IEEE Trans. Commun., vol. 

47, pp.1747-1756, Nov. 1999. 
[10] H. Yang, and M. Alouini, “MRC and GSC diversity combining 

with an output threshold”, IEEE Trans. Veh. Technol., vol. 54, pp. 
1081–1090, May 2005. 

[11] X. Dong and N. Beaulieu, “Optimal maximal ratio combining with 
correlated diversity branches”, IEEE Commun. Lett., vol. 1, pp.22-

24, Jan. 2002. 
[12] A. El-Mahdy, “Adaptive Channel Estimation and Equalization for 

Rapidly Mobile Communication Channels”, IEEE Trans. Commun, 
vol. 52, pp. 1162-1135, July 2004. 

[13] B. Hart, and D. Taylor, “Extended MLSE diversity receiver for 
time and frequency selective channel”, IEEE Trans. Commun., vol. 

45, pp.322-333, Mar. 1997. 
[14] B. Tomiuk, N. Beaulieu, and A. Dayya, “General forms for maxi-

mal ratio diversity with weighting errors”, IEEE Trans. Commun., 
vol. 47, pp.488- 492, Apr. 1999. 

[15] A. Ramesh, A. Chockalingam, and L. Milstein, “SNR estimation in 
Nakagami-m fading with diversity combining and its application to 

turbo decoding”, IEEE Trans. Commun., vol. 50, pp. 1719- 1724, 
Nov. 2002. 

 

 
 

Received: October 12, 2008 Revised: December 29, 2008 Accepted: January 01, 2009 

 

© Ahmed El-Sayed El-Mahdy; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 

work is properly cited. 

-6 -4 -2 0 2 4 6

γc [dB]

10-04

10-03

10-02

10-01

1000

B
it 

Er
ro

r P
ro

ba
bi

lit
y 

proposed MRC, L=7
proposed MRC, L=4
MRC/ML,L=7
MRC/ML, L=4


