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Abstract: The method of steepest-descent is re-visited in continuous time. It is shown that the continuous time version is 

a vector differential equation the solution of which is found by integration. Since numerical integration has many forms, 

we show an alternative to the conventional solution by using a Trapezoidal integration solution. This in turn gives a 

slightly modified least-mean squares (LMS) algorithm. 
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1. INTRODUCTION 

 The steepest descent problem is usually quoted in dis-
crete-time. One possible exception is found in [1] where the 
continuous-time version is explored. Furthermore a continu-
ous-time LMS algorithm is found in [2]. For a scalar cost-
function J which minimises some quadratic error, the steep-
est descent is described as the vector differential equation 

  

dW(t)

dt
= μ

J

W(t)
           (1) 

 W is a vector of unknown weights and μ is a scalar gain. 

Now the discrete-time version of (1) is normally quoted and 

can be found by discrete integration. For example we can 

approximate the derivative of the vector in (1) as 

  

dW(t)

dt
(W

k+1
W

k
) / T            (2) 

where the sampling interval T is normalised to unity and 

  
W

k
is the discrete weight vector at some sample interval k. 

This gives rise to the usual discrete-time steepest descent 

method by substitution of (2) into (1) thus 

  

W
k+1

= W
k

μ
J

W
k

           (3) 

 The term 

  

J

W
k

is usually referred to as the gradient vec-

tor and the steepest descent algorithm is based on the idea 

that for a given vector 
  
W

k
the best direction to go is the one 

that produces the biggest change in the cost function J. The 

resultant LMS algorithm has numerous applications in the 

field of adaptive signal processing. For example in the areas 

of adaptive filters [3], hearing aids [4], speech processing [5]  
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and image processing [6]. The LMS algorithm is usual fa-

voured over several rival estimation methods (e.g. recursive 

least-squares (RLS) [7]) due to its superior tracking ability. 

The LMS algorithm is not considered to be a rival to the 

more complex RLS when compared with speed of conver-

gence. There are algorithms which are not as complex as 

RLS that have convergence rates which lie somewhere be-

tween LMS and RLS. For example the affine projection al-

gorithm [8] is in this category. The reuse of data in the form 

of the data vector and error signal is employed in this paper 

and results in most cases in a faster convergence speed than 

ordinary LMS. It is interesting to note that the affine projec-

tion algorithm also uses the data reuse property. 

2. MODIFIED STEEPEST DESCENT 

 It is established in the signal processing literature [9] that 

the integration method used by (2) above is known as rec-

tangular Euler integration. It is also known that there exists a 

whole family of better approximations among which is the 

Trapezoidal method [9]. A Trapezoidal integration algorithm 

is a closer approximation than that of a Euler integrator and 

hence must be closer to any potential advantages offered by 

continuous-time adaptive filters [10]. 

  

dW(t)

dt

2W
k+1

T
(1 q 1

) / (1+ q 1
)          (4) 

where 
 
q

1 is the backward shift operator. Using (4) in (1) 

gives  

  

W
k+1

= W
k

μ

2

J

W
k

μ

2

J

W
k 1

          (5) 

Application to the Ordinary LMS Algorithm 

 We first apply the ordinary steepest descent method to a 

finite-impulse-response filter (FIR) w(z) of length n 

where
  
w(z) = w

0
+ w

1
z

1
+ w

2
z

2
+ ... + w

n
z

n [11] 
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e

k
 is a scalar error, 

 
d

k
is the desired output and 

  
X

k
is the 

vector of regressors of the filter input and 
  
W

k
has as its ele-

ments the coefficients of w(z). Defining a cost-function  

  
J = E[e

k

2
]             (7) 

where E[.] is the statistical expectation operator and differen-

tiating with respect to the vector 
  
W

k
 gives the usual Wiener 

solution 

  W
*
= R

1
P             (8) 

 In (8) above  W
* is the optimal weight vector, 

  
R = E[X

k
X

k

T
] is the covariance matrix of the vector of re-

gressors and 
  
P = E[d

k
X

k
]  is a vector of cross-correlations. 

Note also that the desired output is given by 
  
d

k
= X

k

T
W

* . 

However, since  R  and  P cannot be known apriori then they 

are replaced by their stochastic equivalents [7] (3) giving rise 

to the ordinary LMS algorithm [12]. 

  
W

k+1
= W

k
+ 2μX

k
e

k
           (9) 

with the error 
 
e

k
taken from (6). 

3. THE TRAPEZOIDAL LMS ALGORITHM 

 We define trapezoidal LMS (TLMS) as the stochastic 

approximation algorithm obtained from the modified steep-

est descent equation (5). Using the same approach as ordi-

nary LMS one obtains 

  
W

k+1
= W

k
+ μX

k
e

k
+ μX

k 1
e

k 1
        (10) 

 For m=n+1 weights, it can be seen that by comparing 

(10) with its LMS counterpart (9) that TLMS has only (1+m) 

extra multiplies and m extra additions. A computational 

comparison of LMS with other related algorithms is thor-

oughly studied in [13]. 

Convergence of TLMS in the mean 

 Define a weight error vector 

  k
= W

k
- W

*           (11) 

and write (10) in the form  
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= [I -μX

k
X

k

T
]

k
μX

k 1
X

k 1
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k 1
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k
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k
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          (12) 

 Then by taking expectations [7] we arrive at the mean 

vector difference equation 

  
E[

k+1
] = [I -μR]E[

k
] μRE[

k 1
]+ 2μ(P RW*)     (13a)

  

and substituting   W
*
= R

1
P  from (8) we get the homogene-

ous equation 

  
E[

k+1
] = [I -μR]E[

k
] μRE[

k 1
]      (13b)  

 From which the equivalent LMS version is well estab-

lished [7]. In the above analysis we assume that the weight 

vector 
  
W

k
 is statistically independent of the vector 

  
X

k
 and 

likewise with vectors 
 k

 and 
  
X

k
. 

 Define a unitary similarity transformation 

E[Vk] = Q
T
E[ k] where Q has its columns an orthogonal set 

of eigenvectors associated with the eigenvalues of R. That is 

Q
T
Q = I and R = Q Q

T
 [7] The matrix  is the diagonal 

matrix of eigenvalues 
 

= diag{
1
,

2
,...

n+1
} . 

 Multiplying (13b) by Q
T
 gives 

  
E[V

k
] = [I μ ]E[V

k 1
] μ E[V

k 2
]         (14) 

 For the i
th

 natural mode of the TLMS system we have 

  
E[v

k
] = (1 μ

i
)E[v

k 1
] μ

i
E[v

k 2
]        (15) 

 Thus for stability the set of polynomials 

1 (1 μ i )z
1
+ μ i z

2
= 0, i = 1, 2 ...(n +1)       (16) 

must have all their roots within z  = 1 and the modes will 

then all die out. For stability and hence convergence of the 

mean weight error vector for this quadratic case, it follows 

from a Jury test [14] that 

0 < μ max < 1           (17) 

or alternatively the step size satisfies 

0 < μ,< 1 / max           (18) 

where max is the largest eigenvalue of R. This result is ap-

parently the same as for ordinary LMS but a simple example 

will show the difference in performance. 

Example 1 

 Consider the identification of a 4
th

 order FIR system 

  
w(z) = 1+ 2z

1
+ 3z

2
+ 4z

3
+ 5z

4  with additive white-

noise of variable variance. We consider graphs of only the 

5
th

 weight for clarity and with 
 
μ = 0.1 . For small values of 

μ  it was found that the LMS and TLMS algorithms behaved 

identically. However, as the step size was increased the 

TLMS shows improvement over LMS as shown in Fig. (1) 

using 
 
μ = 0.1  for all cases. This would be expected since a 

trapezoidal integrator is a better match to a continuous-time 

integrator than a Euler (rectangular) integrator.  

 As the SNR is reduced the TLMS method always gives a 

smaller mean-square error. This is illustrated for 2 further 

SNRs of 26dB and 19dB respectively in Figs. (2 and 3).  

 However, operating with higher values of step size has 

the disadvantage that the stability limit is nearer and hence 

for non-stationary systems any potential advantages may be 

outweighed. 

 Table 1 shows a table of differing SNR values with the 

stead-state mean and variance of the weight. It can be seen 

that the TLMS method always wins out and in particular as 

the SNR reduces the superiority of TLMS over LMS is 

shown by the reduced variance of the weight estimate. 
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Fig. (1). Comparison of LMS and TLMS for a SNR of 40dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Comparison of LMS and TLMS for a SNR of 26dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Comparison of LMS and TLMS for a SNR of 19dB. 
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Table 1. Mean and Variance of Estimated Weight for Different SNR Values in Example 1 

SNR 76dB 49dB 40dB 26dB 20dB 

Mean weight estimate (LMS) 5.0016 5.009 5.02 5.049 5.122 

Mean weight estimate (TLMS) 5.0018 5.004 5.0012 5.007 4.986 

Weight variance (LMS) 5.87e-5 0.0199 0.306 1.98 5.97 

Weight variance (TLMS) 2.04e-4 0.0011 0.006 0.34 1.1177 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). 

 Fig. (4). shows very similar results to the previous exam-
ple where the weight are fixed. Once again the minimum 
mean-square error of TLMS is smaller than that of LMS. 

Example 2 

 Consider the identification of a 4
th

 order time-varying 

FIR system 
  
w(z) = a

1
(k) + a

2
(k)z

1
+ a

3
(k)z

2
+  

  
a

4
(k)z

3
+ a

5
(k)z

4
, k = 0,1...  with additive white-noise of 

variable variance. We consider graphs of only the 
  
a

4
(k)  

weight for clarity and with 
 
μ = 0.1 . We vary the weights 

sinusoidally with increasing amplitude and frequency ac-

cording to 
  
a

i
(k) = isin(2 ki / f

s
), i = 1, 2...5, k = 0,1, 2...  

where 
 
f
s
= 10000 is the sampling frequency in Hz. 

Example 3 

 Consider a problem closely related to adaptive acoustic 

beamforming. Three isolated words are spoken at an angle of 

45 degrees from two microphones approximately 30cm 

apart. In some approaches to adaptive beamforming with two 

microphones, the first stage is to align the two microphones 

to the “look” direction which in this case was made directly 

in front of the microphones. In an anechoic chamber there 

will only be a minor time-difference of arrival (plus perhaps 

some minor attenuation) in transfer function between the 

signal (voice) source and each microphone. However, in 

real-world applications there is reverberation off walls and 

ceiling and a rapidly time-varying transfer function is needed 

to align the microphones in the look direction[15]. This 

transfer function is more than often non-minimum phase in 

nature. We can examine the performance of the LMS and 

TLMS algorithms by estimating the transfer function be-

tween the two microphones. A step size of 
 
μ = 0.08  and 200 

weights was used. One of the originally recorded speech 

signals is shown in Fig. (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (5). A recording at one of the microphones of the speech sig-
nal. 
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 Fig. (6) shows that ordinary LMS gives a lower mean-

square error to begin with, but when a sudden change occurs 

at the second word, TLMS achieves a lower mean-square 

error. The TLMS algorithm maintains this minimum through 

to the third word. Fig. (6) also shows the error signals for 

both cases showing that the speech has been severely attenu-

ated. In an acoustic beamformer this error signal would be 

heard as residual noise. It should be noted that for all of 

these examples, for smaller step-size values the two algo-

rithms yield identical results. This is because the two types 

of integrators only differ significantly at higher frequencies 

which corresponds to when the step-size is bigger. 

4. CONCLUSIONS 

 The continuous-time steepest-descent problem has been 

re-visited. It has been shown that the method of solving the 

continuous-time problem by finding a discrete-time solution 

is not in fact unique. In fact the conventional approach when 

applied to the estimation of weights in an FIR filter uses 

Euler integration giving rise to ordinary LMS. Consequently, 

by using a slight modification of a more accurate Trapezoi-

dal integration method, a modified LMS algorithm was 

found that offers some advantages and is of some theoretical 

and practical interest. 
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Fig. (6). Comparison of LMS and TLMS for a real-recorded speech signal. 
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