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Abstract: In this paper, a general theory of signals characterized by probabilistic constraints is developed. As in previous 

work [10], the theoretical development employs Lagrange multipliers to implement the constraints and the maximum en-

tropy principle to generate the most likely probability distribution function consistent with the constraints. The method of 

computing the probability distribution functions is similar to that used in computing partition functions in statistical me-

chanics. Simple cases in which exact analytic solutions for the maximum entropy distribution functions and entropy exist 

are studied and their implications discussed. The application of this technique to the problem of signal detection is ex-

plored both theoretically and with simulations. It is demonstrated that the method can readily classify signals governed by 

different constraint distributions as long as the mean value of the constraints for the two distributions is different. Classi-

fying signals governed by the constraint distributions that differ in shape but not in mean value is much more difficult. 

Some solutions to this problem and extensions of the method are discussed.  
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1. INTRODUCTION 

 Making a decision as to whether a signal is more likely to 
fit one set of constraints or another is one of the most impor-
tant problems in signal processing [1-4]. Many common de-
tection schemes such as the classical North filter [5] or those 
based upon the Karhunen-Loeve expansion [6] require a 
knowledge of both the signal and noise distribution functions 
under the different hypotheses in order to estimate the per-
formance of the detector and determine detection thresholds 
that will yield a given sensitivity and specificity. However, 
complete knowledge of both the signal and noise distribu-
tions is rarely available. One means of estimating signal and 
noise distributions based upon a few known characteristics 
of the signal and noise is the maximum entropy method 
[7,8]. This method allow for the calculation of the most 
likely distribution functions subject to certain constraints. 
These distributions can be used to create detectors with 
given specificity and sensitivity and to derive detection 
thresholds and generate criteria for significant changes in a 
time series [9]. As shown in previous work [10-12], this 
method yields relatively simple forms for the detection crite-
ria for signals subject to certain equality constraints. It also 
allows for the derivation of approximate detection criteria for 
more general equality constraints. As the formal structure of 
this method is similar to that which underlies all of statistical 
mechanics [13-15] many of the techniques that have been 
developed to analyze problems in this field can then be ap-
plied to maximum entropy signal detection. One limitation in 
previous studies was the reliance on equality constraints. In 
this paper, the approach will be generalized to inequality 
constraints.  
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 Let { }( )x
 
be the distribution function describing the 

probability of observing a set of measured variables: 

{ } { }1 2
, ...

n
x x x x= . The first purpose of this paper is to use the 

maximum entropy approach [1,2,10] to compute { }( )x
 
and 

the entropy associated with a class of signals that fit a collec-

tion of probabilistic constraints. Subsequently, it will be 

shown how these distribution functions can be used to de-

velop methods for detecting the difference between signals 

satisfying different constraints. In a previous paper [10], this 

problem was solved in the case in which all constraints were 

simple equalities. In the current paper, the more general case 

in which the constraints are random variables with a known 

distribution function is discussed and applications devel-

oped. 

BASIC THEORY 

 The simplest binary detection problem involves deter-

mining whether a set of measured signal values are more 

likely to be drawn from a system characterized by hypothesis 
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where 
0 0
,

i i
s n are the signal and noise under hypothesis 

 
h

0
 

and 
1 1
,

i i
s n are the signal and noise values under hypothesis 

  
h

1
. This requires that finding a function { }( )x that can be 

applied to the a set of recorded signals so that when 

{ }( ) ( )x > this recorded signal is more likely to come 

from 
  
h

1  
where  is the probability of a false positive detec-

tion. This is only part of what is required for the detection 
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problem. It is also necessary to know , the probability of a 

false negative detection as a function of the threshold, the 

signal characteristics and noise characteristics under each 

hypothesis. If the probability distribution functions for the 

measured signals are well known under each hypothesis to 

be { }( )0
x  and { }( )1

x , one standard choice for { }( )x used 

in Neyman-Pearson decision theory [1,3,5] is 

{ }( )
{ }( )
{ }( )

1

0

ln
x

x
x

=
 although others like the Rao test [1] 

based upon the first and second derivatives of the probability 

distribution functions can be constructed. Performing these 

calculations is a relatively simple matter when the signal is 

deterministic and the noise distribution functions are known 

a priori. When there is no a priori knowledge of the distribu-

tion or amplitude of the noise, there are three possible ap-

proaches. First, some approximations about the signal and 

noise may be made that allow an estimate of the mean and 

variance of the noise under each hypothesis [1]. This allows 

for the construction of an approximate Gaussian probability 

distribution for the noise and application of the approach 

described above. Another approach would be to empirically 

estimate { }( )0
x

 
and { }( )1

x  (often by matching a known 

distribution function with a number of variable parameters to 

the data) and then make multiple measurements in order to 

define the probability distribution function for the measured 

data [16-18]. Once these three distributions are known, the 

Kullback-Leibler mutual entropy can be used to determine 

whether the measured distribution function is closer to 

{ }( )0
x

 
or { }( )1

x . The problem is that estimating a com-

plex probability distribution function from data is difficult. 

The third approach involves constructing maximum entropy 

distribution functions based upon certain constraints that the 

measured signal and noise are known to satisfy under each 

hypothesis. This is the approach to be further developed be-

low. 

 Before proceeding, it is important to note that the meas-

ured variables xi could be as simple as the amplitude of a 

signal at a single point in time but they could also represent 

more general collections of data. Each value might also rep-

resent a collection of pixel values in various parts of an im-

age at a given time or, in a system of classical particles, each 

xi might contain the position and moment of each particle at 

a given time. Each collection may also include data from a 

number of multiple time points. For example, if the signal is 

described by an autoregressive process of order p, then each 

collection contains the value of the signal at p consecutive 

time points.  

 In the previous paper [10], the computation of the en-

tropy of signals subject to constraints of the form: 

{ } { }( )
1

; 0,1...
n

i k k

i

dx F x x C k N

=

= =          (1) 

was explored. Although this formulation may seem unfamil-

iar, it becomes clear with a simple example. When 

{ }
1

1
n

k

k i

i

F x x
n =

=  (1) becomes a set of constraints on the 

mean value of the k’th moment of the signal. However, in 

many cases the constraint values are derived from experi-

mental observations and can only be known to lie in certain 

ranges. Thus, it is important to study more general con-

straints with the form: 

{ }( ) { } { }( )
1

; 0...
n

i k k

i

dx x F x x C k Nμ
=

= =         (2) 

where: 

{ }

{ }( )

{ }

 is the k'th constraint function

 is a weighting function that is either 0 or 1 

          depending on whether the measured values 

          are a priori possible 

 is a random variable cal

k

k

F x

x

x

C

μ

led the k'th constraint value
 

 If each measurement is a scalar, then 
i

dx  is the differen-

tial of the value of the signal at the i’th time point however if 

the measurements are q dimensional objects, then 
i

dx  is a 

shorthand notation for 
q

id x
 
expressing the differential in the 

q dimensional signal space. 

1

n

i

i

dx

=

is a product of the differ-

entials of the measured signals at each time point. Thus, 

1

n

i

i

dx

=

 refers to an integration over all possible values of 

the measured signal at all time points. The weighting func-

tion { }( )xμ
 
is critical when not all combinations of the val-

ues of the measured data are a priori possible. This would 

occur, for example, in the case where digital data is being 

sampled and only certain values of the measured signal are 

possible. It would also occur in the case where each xi was a 

collection of measurements, some of which were also con-

tained in xi-1. The difference between the terms 
k

C and 
k

C  is 

that 
k

C  will be used in this paper whenever the constraint 

values are random variables and 
k

C will be used when they 

are exact values. The k=0 constraint will always taken as the 

normalization constraint on the distribution function: 

{ }0 0
1; 1F x C=

 

 The probability of observing the constraint values 

 1...
k

C k N=  is given by a known function { }( )C

k
C . Prior to 

beginning an analysis of this problem, it is useful to ac-

knowledge the explicit dependence of the distribution func-

tion on the constraint values by considering the quanti-

ties:

{ } { }( )
{ } { }( )
{ } { }( ) { } { }( ) { }( )

{ }( ) { }( ) { } { }( )

{ }( ) { }

1

| Conditional probability of the signal values given a specific set of constraints
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=

=

=

= { }( )
1
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N
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             (3) 
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 With this notation, it is possible to rewrite (2) in the 

form: 

{ }( ) { } { } { }( )

{ }( ) { } { } { }( ) { }( )

1

1

| ; 0...
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n

i k k k

i

n

C

i k k k k

i

dx x F x x C C k N
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dx x F x x C C C k N

μ

μ

=

=

= =

= =

        (4) 

 The introduction of the weighting function introduces 

another constraint associated with the fact that the distribu-

tion function must be zero at the “prohibited signal values”: 

{ }( ) { } { }( )0 , 0
k

x x Cμ = =
 

 This can be implemented by requiring that all distribution 

functions satisfy: 

{ }( )( ) { } { }( )2

1

1 , 0
n

i k

i

dx x x Cμ
=

=

 
         (5) 

 The maximum entropy method can be used to the esti-

mate the most likely joint distribution function using the 

Shannon entropy: 

{ }( ) { } { }( ) { } { }( )
1 1

, ln ,
n N

i i k k

i i

S dx x dC x C x Cμ
= =

=
        (6) 

with the constraints: 

{ }( ) { } { }( ) { }( )

{ }( ) { } { } { }( ) { }( )

{ }( )( ) { } { }( )
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1 , 0
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C

i k k

i
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C

i k k k k

i

n

i k

i

dx x x C C

dx x F x x C C C k N

dx x x C

μ

μ

μ

=

=

=

=

= =

=

        (7) 

 The first of these constraints simply reproduces the defi-

nition of the relationship between the joint distribution func-

tion of both signal and constraint values and the marginal 

distribution of constraint values. The second relates to the 

constraints on signal values themselves. The third is the pro-

hibition on signal values that are not possible as determined 

by the weighting function. The constraints (7) must apply for 

every possible set of constraint values { }kC . For this reason, 

the Lagrange multipliers will be designated { }( ){ }k k
C

 
and 

{ }( )k
C . Using these Lagrange multipliers, the maximum 

entropy distribution function is that which maximizes: 

{ }( ) { } { }( ) { } { }( )

{ }( ) { }( ) { } { }( ) { }( )
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 Thus the distribution function is determined from 

{ } { }( )
0

,
k

I

x C

=  or: 

{ }( ) { } { }( ) { }( ) { }( ) { }( ) { }( ) { }

{ }( ) { }( )( ) { } { }( )
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x x C x C x C F x
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μ
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= + + +

+
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so that the maximum entropy distribution function is given 

by: 

{ } { }( ) { }( )
{ }( ) { }( ) { }0

1

1

,

N

k k k k

k

C C F x

k
x C x eμ =

+

=       (10) 

 The values of the Lagrange multipliers are chosen so that 

the constraints resulting from 
{ }( )

0

k k

I

C

=  are satisfied: 
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 Note that with the distribution function (10), the third 

constraint in (7) is automatically satisfied and the value of 

 is not important in determining the distribution function. 

By taking the ratio of these two expressions in (11), it can be 

seen that: 

{ }( ) { }
{ }( ) { }

{ }( )
{ }( ) { }

1

1

1

1

; 1...

N

k k k

k

N

k k k

k

n C F x
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k

n C F x

i

i

dx x F x e

C k N

dx x e

μ
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=

=

=

=
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 These relations can be written more compactly by defin-

ing: 

{ }( ){ }( ) { }( )
{ }( ) { }

1

1

ln

N

k k k

k

n C F x

k k i

i

A C dx x eμ =

=

=        (13) 

from which it follows that the specific values of the La-

grange multipliers satisfying the constraints { }( ){ }*

k k
C  can 

be determined from: 

{ }( ){ }( )
{ }( )

{ }( ){ }*

; 1...

k k

k k

k

k k

C

A C

C k N

C

= =
        (14) 

 It is helpful to define: 

{ }( ) { }( )
{ }( ) { }*

1*

1

ln

N

k k k

k

n C F x

k i

i

A C dx x eμ =

=

=       (15) 

 Noting that the normalization (k=0) constraint can be re-

written as: 

{ }( )
{ }( )

{ }( ) { }

{ }( )
*

*

0
1

1

1

N

k k k
k

k

n C F x
C C

i k

i

e dx x e Cμ =

=

=      (16) 

makes it possible to write: 

{ }( ) { }( ) { }( )* *

0
1 ln

C

k k k
C A C C+ =        (17) 

 Substituting this into the definition of the joint distribu-

tion function (8) yields: 
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{ } { }( ) { }( ) { }( ) { }( ) { }*
*

1,

N

k k k
k

k

C F x
A CC

k k
x C C e e ==       (18) 

 Although these manipulations may seem to be purely 

formal, they are important in making the connection between 

the detection/information content and thermodynam-

ics/statistical mechanics which guides these developments. 

In particular, { }( )*

k
A C  is the analog of the Helmholtz free 

energy [15]. 

 The entropy of the system (within the maximum entropy 

approximation) is given by: 

{ }( ) { } { }( ) { } { }( )

{ }( ) { }( ) { }( ) { }( ) { }( ) { }( )

*

1 1

* *

11 1 1

, ln ,

ln

n N
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N N NN

C C C C

i k k i k k k k k k k

ki i i

S dx x dC x C x C

dC C C dC C A C dC C C C

μ
= =

== = =

=

= +

            (19) 

 This expression can be simplified considerably by noting 

that the entropy of signals associated with a specific set of 

constraint values { }kC  is: 

{ }( ) { }( ) { } { }( ) { } { }( )

{ }( ) { }( )

*

1

* *

1

| ln |
n

k i k k

i

N

k k k k

k

S C dx x x C x C

A C C C

μ
=

=

=

=

      (20) 

so that (19) can be rewritten as: 

{ }( ) { }( ) { }( ) { }( )* *

1 1

ln

N N

C C C

i k k i k k

i i

S dC C C dC C S C

= =

= +       (21) 

 As might be expected, the first term is the entropy asso-

ciated with the uncertainty in the value of the constraints. 

The second term is the weighted average of the entropy as-

sociated with any single constraint value. This expression is 

critical because it allows for an immediate connection with 

the results obtained for equality constraints in the previous 

paper [10].  

APPLICATION: ENTROPY CHANGE DUE TO UN-

CERTAINTIES IN CONSTRAINT VALUES 

 Within the theoretical framework developed above, it is 

possible and useful to address the change in entropy (and 

corresponding loss of information content) when the con-

straint values are not known precisely. Consider the case in 

which the constraint values { }kC

 
are known to be close to the 

values { }0kC

 
and are independently Gaussian distributed 

around { }0kC : 

{ }( )
( )

2
0

2
2

2
1

1

2

k k

i

C C
N

C

k

i
i

C e

=

=        (22) 

 If the constraint values do not vary much from the 

{ }0kC , a Taylor series expansion can be used to write: 

{ }( ) { }( )
{ }
( )

{ }
( )( )

0 0

* 2 *

* * 0 0 0 0

1 ' 1

1

2
k k

N N

k k k k k k j j
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S S
S C S C C C C C C C

C C C= =
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 Substituting this into (21) results in the expression: 

{ }( ) { }( ) { }( ) { }( )
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1 1
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2 2
k

N N
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k k k C

S dC C C dC C S C

S
S

C
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= =
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 In [4] it was shown, using a multidimensional cumulant 

expansion, that if: 

{ } { } { } { }( )

{ } { } { } { }

0

0
1

' ' '
0 0 0

|
n

i i i k

i

ii i i i i

F x dx F x x C

M F x F x F x F x

=

=

=       (25) 

then: 

2 *

1

'

'

kk

k k

S
M

C C

         (26) 

 Important insights can be obtained by considering the 

special case where the matrix 
'kk

M  is diagonal. In this case, 

since each Mii must be positive by the Cauchy-Schwartz ine-

quality, it is clear that S
*
 is an increasing function of the 

{ }k  
for small values (due to the first factor in (21)) and 

eventually declines as the { }k  
increase further. If no in-

formation about the uncertainties in the constraint values 

were available, then the best guess for those variations would 

be that which is associated with the largest value of the en-

tropy S
*
. Some simple algebra demonstrates that this occurs 

when: 

k kk
M=           (27) 

 The associated maximum value of the entropy is: 

* *

max 0

1

1
ln 2 ln

2

N

kk

i

S S N M

=

= + +        (28) 

 This is an important point because it indicates that, if no 

additional information is provided, it is most likely that the 

constraints are NOT constants but stochastic variables. This 

indicates the importance of understanding stochastic con-

straints of the form (2) in addition to the equality constraints 

of (1). It also points out the relationship between the second 

moments of the constraint functions and the likely variability 

in the constraint values. This is a familiar relationship in 

thermodynamics [14.15].  

SIGNAL DETECTION THEORY 

 One important application of the theory developed above 

is in signal detection. Consideration will be given to the case 

in which a decision must be made as to whether a measured 

signal belongs to the class of signals associated with one of 

two different constraint distributions. Specifically, a decision 

must be made as to whether hypothesis  

 H0 or hypothesis H1 is the best descriptor of the test sig-

nal:  
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{ }( )

{ }( )

0

1

:  is the distribution of constraints

:  is the distribution of constraints

C

k

C

k

C

C

0

1

H

H

       (29) 

 In order to make the decision as to which is hypothesis is 

most likely based upon a set of observed data, a test statistic 

is needed that is both simple to calculate and takes on very 

different values depending on which hypothesis is true. One 

such statistic is the following: 

{ }( ) { }( ) { }( )
{ } { }( )
{ } { }( )

1

1 0

1
0

,
' ' ln

, '

N
i

C C

k k k k

k
i

x C

x dC dC C C

x C=

=
      (30) 

where { } { }( )1
,

i
x C  is the joint probability distribution under 

H1 and { } { }( )0
,

i
x C  is the joint probability distribution under 

H0, This statistic has the property that if H1 is more likely 

than H0, averaged over the possible sets of constraints, then 

{ }( ) 0x > . Using (18) and (20) it is possible to simplify (30) 

to 

{ }( )

{ }( ) { }( ) { }( ) { }( ) { }( ) { }( )

* *

0 1

* *

1 0

1 11 1

' ' ' '

N N N N

C C

i i k k k k k k k k k k

k ki i

x S S

dC dC C C C F x C C F x C

= == =

=

+

            (31) 

where 
*

0
S

 
is the entropy under hypothesis H0 and 

*

1
S  is the 

entropy under hypothesis H1. The first term in this expres-

sion demonstrates the importance of the entropy difference 

between the signals that fit the two hypotheses in the detec-

tion problem. In order to determine detection criteria, it is 

necessary to estimate both the expectation value and the 

variance of this test statistic under the two hypotheses. As a 

first step, note that: 

{ }( ) { } { }( )

{ }( ) { } { }( )

0 0 |0

1 1

1 1 |1

1 1

n n

S C

i k i k k k

i i

n n

S C

i k i k k k

i i

dx x F x dC C C C

dx x F x dC C C C

= =

= =

= =

= =

      (32) 

where 
|0 |1,

k k
C C  are the expectation values of the constraint 

values under the two hypotheses. The expressions (32) can 

be used to write: 
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( ) ( ) { }( ) { }( )
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( )( ) ( )( )

0,10,1
1
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0 1 1 0 | 0,1 | 0,1
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0 1 |1 |1 |0 |0| 0,1 | 0,1
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S
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N N N N

C C

i i k k k k k k k kk k

k ki i

N N

k k k kk k

k k

x dx x x

S S dC dC C C C C C C C C

S S C C C C
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= +
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 Where: 

{ }( ) { }( )

{ }( ) { }( )

{ }( ) { }( )

*

|

1

*

1
|

*

1

N

C

k l i l k k k

i

N

C

i l k k k k

i

k l N

C

i l k k k

i

dC C C

dC C C C

C

dC C C

=

=

=

=

=

        (34) 

 The notation here is that whenever a parenthesis appears 

in a subscript it indicates a choice between different hy-

potheses. For example { }( )
( )0,1

x  would refer to the average 

of the test statistic under either hypothesis 0 or hypothesis 1. 

Also, as indicated above, when a vertical slash appears in a 

subscript, it indicates which hypothesis is used to compute 

the relevant average.  

 Equations (34) and (35) imply that: 

{ }( ) { }( ) ( )( )|1 |0 |0 |1
0 1

1

N

k k k k

k

x x C C

=

=        (35) 

 As in the case of equality constraints [4], the difference 

in the averaged test statistic in the two hypotheses can be 

considered as the output of a simple filter. If the difference in 

the average values of the Lagrange multipliers is considered 

one vector and the difference in the average constraint values 

another, then (35) is the scalar product of these two vectors. 

The structure of the detection statistic (35) is the same as that 

used in the classical matched filter detection algorithms and 

is hence a generalization of these techniques [3]. The struc-

ture of (35) indicates that the ability of the test statistic to 

classify signals is proportional to the difference in the La-

grange multipliers associated with each class of signals. Sig-

nals are best detected by the differences in mean values of 

constraint functions that are associated with the largest dif-

ference in Lagrange multipliers. This is very analogous to 

the situation in statistical mechanics where the inverse tem-

perature (which is essentially the Lagrange multiplier that 

appears as a result of the constraint of total energy) sets the 

scale for which energy differences will be associated with 

significant changes in the probability distribution function 

[14]. A somewhat similar idea has been used in the maxi-

mum entropy approach to statistical inference [19,20] and in 

the use of moments to distinguish between different time 

series [21]. 

 In order to determine the receiver operating characteris-

tics of this detector, it is important to compute the variance 

of the test statistic under the different hypotheses. Some cal-

culations will show that:  

{ }( ) { }( ) { }( )

{ }( ) { }( )
( )

( ) { } ( )( )

{ }( ) { }( )
( )( )

( )

( )( )

{ } ( )( ) { } ( )( )

0 1 |1 |1 |0 |0

1 1

* *

,1 ,0 | 0,10,1
1

2
2 * * * * (0,1)

(0,1) |1 |0 '|1 '|0 '
0,1

10,1
' 1

(0,1)

' '| 0,1 '| 0,1

N N

k k k k k k

k k

N

k k k k

k

N

k k k k kk

k

k

kk k kk k

x S S F x C F x C

x x F x C

x x M

M F x C F x C

= =

=

=
=

= +

=

= =

=
( )0,1

   (36) 

 Within the context of Neymann-Pearson decision theory, 

H1 will be chosen if: 

{ }( )x >           (37) 

for some threshold . In order to choose the optimal thresh-

old, it is necessary to estimate the probability distribution 

functions of the test statistic under each hypothesis. The 

simplest assumption is that this distribution of the test statis-

tic is approximately Gaussian: 
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( )

( )

( )

( )

2

2

0

2

2

1

2

0
2

0

2

1
2

1

1

2

1

2

p e

p e

=

=

0

1

         (38) 

 We now need the false positive rate as a function of the 

threshold . 

( )
0

' 'p d=  (39) 

 It is also important to calculate the false negative prob-

ability, . This is the probability that the signal is classified 

as coming from a distribution characterized by the H0 con-

straints when it truly comes from H1. 

( )
1

' 'p d=          (40) 

 Now, the value of the threshold can be computed as a 

function of the desired false positive rate: 

( )

( )
2

2

0

'

2

0
2

0

2

0

1
' ' '

2

1

2 2

p d e d

erfc

= =

=

0

0

       (41) 

and 

( )

( )
2

2

1

'

2

1
2

1

2

1

1
' ' '

2

1
1

2 2

p d e d

erfc

= =

=

0

0

      (42) 

where: 

( )( )

2

1
|1 |0 |0 |1

1

2
( ) t

x

N

k k k k

k

erfc x e dt

C C
=

=

= =
0

 

      (43)  

 Now,  

( )2 1

0
2 2erfc= +

0

        (44) 

and so: 

( )

( )

2 1

0

2

1

10

2

1
1

2 21
1

2 2

1
1 2

2 2

erfc
erfc

erfc erfc

=

=

        (45) 

 This is the expression that determines the receiver operat-

ing characteristics of the detector.  

 Greater insight into the detector described above can be 

obtained by considering the situation in which there is a sin-

gle constraint other than the normalization constraint (i.e. 

N=1):  

{ }( ) { }( ) ( )( )

( )

( )
( )

1|1 1|0 1|1 1|0
1 0

2
2 (0,1)

0,1 1|1 1|0 11

1|1 1|0

1|1 1|0
2 (1)

1 11

(0)

0 11

(1)

1 11

sgn
2 2

x x C C

M

C C

M

M

M

= =

=

=

=

      (46) 

 This formula again points out the role of the variance in 

the constraint functions as the effective noise level in the 

system under consideration as was suggested earlier. It is 

also clear that the sensitivity of this detector is mainly de-

termined by the difference in the mean value of the con-

straints under the two conditions only to a lesser extent the 

detailed structure of the distribution function for the con-

straint values.  

 Appendices A and B describe the application of the prin-

ciples developed above to the case in which the constraint 

functions are quadratic functions of the signal values. In ad-

dition to illustrating the mathematical analysis, it demon-

strates the critical importance of the ratio of the difference 

between the mean constraint values in the two different con-

ditions to the square root of the variance of the signal in de-

termining detectability. It does also illustrate the point evi-

dent in (46) that although the detection statistic (30) is sensi-

tive to the difference in the shapes of the distributions under 

the two hypotheses, it is more sensitive to differences in the 

mean constraint values in the different distributions because 

the latter contribution scales with the square root of the 

number of data points. 

DISCUSSION 

 There are many ways to compute the information content 

of a signal and create schemes to detect specific signals. The 

specific advantage of using the constrained signal approach 

is that it can be applied even when very little information is 

known about the signals. This is particularly important when 

dealing with biological signals where it is difficult to distin-

guish signal from “noise” and to define many details of the 

signal and noise characteristics. However, the human eye can 

distinguish certain patterns such as a seizure on an electroen-

cephalogram quite easily even when they are low in ampli-

tude compared to other types of brain electrical activity. It is 

possible that this process used by the eye/brain is better de-

scribed by a constraint type analysis since it relies only on a 

few specific signal details of interest rather than a complex 

analysis of many signal characteristics. This is the basis of 

the perceptron detection algorithms [22,23]. Additional stud-

ies would need to be performed in order to answer these 

questions.  

 In any case, the general theory of constrained signals 

provides important means for computing the information 

content or entropy in a class of signals. It allows for the solu-



Constrained Signals The Open Signal Processing Journal, 2011, Volume 4    7 

tion of some problems whose solution would be difficult by 

other means. One example is the computation of the effect 

that specifying a signal’s power and bispectrum has on en-

tropy [11]. Another example is the detection of signals that 

have been distorted by processing through a non-linear filter 

[11]. This method also subsumes other more general prob-

lems in signal detection and does lead, in the field of signal 

detection, to a generalization of the correlation/matched filter 

detector. 

 There remain some difficulties using the maximum en-

tropy approach. The first difficulty is that it is only possible 

to compute the function { }( )k
A  analytically for a few types 

of constraint some of which have been discussed in this and 

previous papers [10,11]. However, this does not limit the 

applicability of the technique. The similarity between { }( )k
A

 
and the Helmholtz free energy from statistical mechanics 

makes it possible to directly apply techniques already devel-

oped in statistical mechanics over the last 100 years to prob-

lems in signal processing and detection. In particular, there 

are a larger number of exactly solvable models from statisti-

cal mechanics that could be useful in studying certain signal 

types. Even in the case where exact solutions are not avail-

able, useful approximation methods involving perturbation 

expansions and the asymptotic expansion are available [10]. 

Other approximations developed originally from the field of 

statistical mechanics such as the mean field approximation 

[11] or the Kirkwood superposition approximation [24] have 

been shown useful in computing the entropy of a signal. 

When analytic methods cannot be used, there are well known 

methods in statistical mechanics such as the Metropolis algo-

rithm [25] for numerical computation of partition functions 

that could be adapted for use in the analysis of constrained 

signals.  

 This paper has developed a formalism to distinguish sig-

nals constrained by different probabilistic constraints. The 

classification scheme presented in this paper using the test 

statistic (30) is only one possible means of classifying sig-

nals and using other test statistics may be desirable under 

certain circumstances. Detection methods based upon the 

simple test statistic (30) readily distinguish between signals 

when the mean value of the constraints is different in the 

various classes. However, they perform less well in classify-

ing signals associated with the same mean constraint values 

that have different shapes of the constraint distribution func-

tion. This is a difficult problem but it is likely that there are 

solutions within the maximum entropy approach outlined 

above. First, it is possible that breaking the observed signal 

into subsignals and testing each of the subsignals may pro-

vide a better overall classification. Second, multiple test sta-

tistics can be used which place different weights on different 

observed signal values { }x . A third possibility would be to 

apply a non-linear filter to the signal prior to implementing 

the detector. In particular, if two signals differ in the degree 

of variance around a mean value, simple threshold detections 

based upon the signal value will be problematic. Transform-

ing the signal into the square of the distance between its 

value and the mean value and using a threshold detection on 

this transformed signal will result in improved detectability. 

APPENDIX A. BASIC THEORY OF GENERAL QUADRATIC CONSTRAINTS 

 The general theory of detection for inequality constraints discussed in the main text simplifies dramatically when the con-

straint functions are quadratic functions of the signal values: 

{ } ( ) ( )

1 1

; , 1... ; 1...
n n

k k

k j j ij i j

j ij

F x D x E x x i j n k N
= =

= + = =                  (A1) 

where the ( )k
D

 
are known constant vectors and ( )k

E

 

are known constant matrices. In this case: 

{ }( )
{ }( ) { }

1

1

ln

N

k k k

k

n C F x

k i

i

A C dx e =

=

=                    (A2) 

 This can be simplified by writing: 

{ }( ) { }
1 1 1

N n n

k k k j j ij i j

k j ij

C F x D x E x x
= = =

= +                   (A3) 

where: 

{ }( ) ( )

{ }( ) ( )

1

1

N
k

j k k j

k

N
k

ij k k ij

k

D C D

E C E

=

=

=

=

                     (A4) 

 It is then possible to write: 

{ }( )
1

1 1

1

14
1 1

ln ln ln det
det 2 2

n
4

l

n N

Tij i j i i

ij i

E D
E D

x x

k

x n
D

n Tn
e d x e E D

E
A C E D= =

+

= = +=              (A5) 



8    The Open Signal Processing Journal, 2011, Volume 4 Mark M. Stecker 

 This is true only when the integral converges. One criterion for this is det 0E > , another criterion is that if E is symmetric, 

all of its eigenvalues must be positive. The Lagrange multipliers are then determined by: 

( ){ }( )

( ){ }*

; 1...

k k

k k

k

k

C

A C

C k N= =                    (A6) 

 And the entropy for a single set of constraints is determined from: 

{ }( ) { }( ) { }( )* * *

1

N

k k k k k

k

S C A C C C

=

=                    (A7)  

 In the special case where E is a diagonal matrix, the above equations simplify greatly. In that case: 

{ }( ) ( )

( )

( ) ( )

2

1 1

2

2

1 1 1 1 1

2

2

1

1 1
ln ln

2 2 4

ln1 1 1

2 4

1 1 1

2 2

2

n n

i

ii

i i ii

n n n n n

iiii i ii i ii i i

i i i i ik k ii k i ii k ii k ii k

k ki i

ii i

i iii ii ii

k

Dn
E

E

d EdE dD dE D dE D dD

d E d D dE

A C

A

d E d E d

D D
E

E E E

A A

D

= =

= = = = =

=

+

= + = +

= + +

=

               (A8) 

 The equations that determine the values of the Lagrange multipliers are then: 

( ) ( )
2

2

1

1 1 1

2 2

k ki i

ii i k

i iii ii ii

D D
E D C

E E E=

+ + =                    (A9) 

 Multiplying both sides of (A9) by
*

k
and summing over k yields : 

2

*

1

1 1

2 2

i

k k

i kii

D
n C

E=

+ =                   (A10) 

so that it is possible to write: 

{ }( ) ( )

{ }( ) ( )

*

*

*

1

1

1
ln ln

2 2 2

1
ln ln

2 2

ii k k

i k

ii

i

k

k

A C

S C

n n
E C

n
e E

=

=

+ +=

=

                (A11) 

 Although this expression for the entropy is simple, the problem is that it is in general difficult to solve (A9) analytically to 

obtain the value of the Lagrange multipliers. However, in the special case where: 

( )

(1)

0; 2

0

k

ij

i

E k

D

=

=

 

it is possible to find a simple solution. In this case: 
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where: 

( ) ( ')

' (1)
1

1
; , ' 2...

k kn

i i

kk

i ii

D D
F k k N

n E=

= =                  (A13) 

 Defining the inverse matrix to F, F
-1

, if it exists: 

1

' '

2

; , ' 2...
N

kl lk kk

l

F F k k N

=

= =  

enables a solution for all of the Lagrange multipliers 2k in terms of 
1
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* * 11
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with 
*

1
determined from: 

1

' ' 1*

21
' 2

1 2

2

N
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k
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n
C C F C

n =

=

=                   (A15) 

 Thus, the explicit solutions for the Lagrange multipliers are: 
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 This allows the entropy in the case of equality constraints to be written as: 

{ }( ) ( )(1)

11
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ii N

i
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and for a general distribution of constraints: 

( ) { }( )(1)

11 1
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2
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1
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ln ln ln

12 2 2 2
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ii l k

i l

k k kk
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 Note that if 
(1) 0
ii

E > then 
*

1
must be negative. Hence any set of possible constraints must satisfy 1

' ' 1

2

' 2

1
N

k k kk

k

k

C C F C
n =

=

<
.  

 Under the above assumptions, it is also possible to compute the values of 
2

(0,1), required to evaluate the performance of 

detectors based upon the test statistic (30). Appendix B shows the detailed but straightforward analytic calculations in a simple 

case in which there is one linear and one quadratic constraint. This is accomplished both in the case of uniform distributions 

and discrete distributions. This case is particularly enlightening because it demonstrates the expected effect that the difference 

in mean values of the constraint under the two hypotheses has on the sensitivity and specificity of the detection algorithm. As 

expected and shown in Fig. (1), the larger the difference in the mean values in the two distributions, the better the test statistic 

(30) can discriminate between signals. The efficacy of the detector is a function of the variable 
2

1 22

C
y

C nF
=

 which, as defined 
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in Appendix B, is a normalized ratio of the k=2 constraint value to the square root of the k=1 constraint value (and is thus a 

“signal to noise ratio”). It is important to note that both C1 and C2 will increase linearly with the number of sample points in the 

signal so that y will be independent of the number of sample points in the signal. Fig. (2) shows the effect of increasing the 

number of data points, n, on the value of  when the detection threshold is set to keep the value of constant. This figure 

demonstrates that the number of false negatives decreases quickly as n increases as expected. On the other hand, the ability of 

the test statistic (30) to classify a signal as belonging to one or another class of signals characterized by different shapes but the 

same mean values of the constraint values is much poorer. Fig. (3) shows the ROC curve obtained using the test statistic to de-

termine whether a signal comes from one of two distributions with the same mean constraint values. Distribution A has the 

constraint values all near the value of 0.5 and distribution B has half of the constraint values near 0.1 and half near 0.9. There 

are two reasons for this lack of power in the detection of constraint distribution shape. The first is that the ratio of the two vari-

ances of the test statistic under the two hypotheses which occurs in (45) is one of the main channels through which changes in 

the constraint shape affect the ROC curves. However, this ratio cannot depend on n while the factor 2

1
2

 which determines 

how the changes in the mean value of the test statistic affect the ROC curve increase with n  as demonstrated in Appendix B. 

Thus, detectability of the changes in mean values improves quickly with n while the detectability of changes based upon shape 

changes does not. In addition, Figs. (4 and 5) demonstrate that the entropy of the constrained signals changes much more rap-

idly with changes in the distribution mean value than with changes in the width of the distribution. 

 

Fig. (1). Receiver Operating Characteristics of the detector based upon the test statistic (30) for signals with a constant quadratic constraint 

and a linear constraint (measured by the normalized variable y) that is different between the two hypotheses. y is a measure of the difference 

in the linear constraint values between the two hypotheses. 

 

Fig. (2). As a function of the number of points in the signal, n, the detection threshold is set to maintain a constant probability of 0.01 of false 

positive detections. The probability of false negative detections declines rapidly with increasing number of data points. y=0.1. 
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Fig. (3). ROC curve where under the two hypotheses, the constraint values have the same mean but the different shapes shown as A and B. It 
can be seen that the ability to reliably detect a signal under these circumstances is low. 

 

Fig. (4). The change in entropy when a uniform distribution of constraint values between y
+
 and y

-
 is chosen and the mean of the distribution 

remains at y=0.5. This demonstrates the minimal effects of the constraint distribution width on the entropy. 

 

Fig. (5). In comparision to Fig. 4, this figure shows the larger effect that changes in the mean value of the constraint has when the width of the 
distribution is held constant. 
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APPENDIX B: COMPUTATION OF THE DETECTION TEST STATISTIC IN THE CASE OF SIMPLE QUAD-

RATIC CONSTRAINTS.  

 The goal of this appendix is to illustrate the computation of the detection test statistic parameters: 

( )( )

( ) ( )( )

|1 |0 |0 |1

1

2 (0,1)

|1 |0 '|1 '|0 '0,1
1

' 1
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                   (B1) 

in the very simple case where there is one linear and one quadratic constraint and the linear constraint value is differently dis-

tributed under the two hypotheses H0 and H1: 
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 Since the value of C1 is the same under both hypotheses, (B1) simplifies to: 
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               (B4) 

 The first step in evaluating these quantities is computing the mean value of the Lagrange multipliers under each hypothesis: 

( ) ( )
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where: 
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 Carrying out the integrations: 
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or in terms of the “dimensionless” variables: 
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and so: 
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 In order to compute the variance of the test statistic, it is critical to know the value of the expectations of the second mo-

ments of the constraint functions: 
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and in terms of the function A: 
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 Since: 
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(B11) can be rewritten as: 
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and so: 
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 The quantities that determine the receiver operating characteristics are: 
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 It is important to note, as expected, that the detectability for small changes increases with the square root of the number of 

data points in the signal since the quantities y should have only minimal dependence on n. Fig. (1) shows the receiver operating 

characteristics as a function of the difference between the mean values of y under the two hypotheses. Fig. (2) shows the 

changes in false positive rate as a function of n. This illustrates the significant influence of this factor on detectability. How-

ever, the ability to detect differences based upon the distribution is very poor. In fact, with this simple model and the uniform 

distribution functions, it is impossible to use the test statistic (30) to discriminate between two uniform distributions with equal 

means and different variance. This is in part due to the fact that the variances in both hypotheses scale similarly with n and 

hence their ratio which is what determines the ROC curves is independent of n.  

 In order to probe the limits of the ability of the proposed test statistic to detect signals constrained by different constraint 

distributions but the same mean values. Consider the simple case in which the hypotheses about the constraint functions are 
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for some value 0 1< . Both of these distributions have the same mean value and hence 0=  but they have very different 

shapes. It is clear that the Lagrange multipliers have the  
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 Now, the expressions for the variance are: 
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and so the expressions for the variance of the test statistic under each hypothesis are: 
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 Fig. (3) shows an example of the receiver operating characteristics of the test statistic when 0.9= . It can be seen that even 

in this extreme case, the discrimination of the test statistic is poor when applied to a single signal. Since this result is not 

strongly dependent on the number of data points analyzed, it is likely that breaking the signal into subsignals and application of 

the test statistic to each will improve the ability to detect differences in the distributions. 

 In a previous paper [4], detectors of the class discussed in this paper were called “entropy detectors”. With this in mind it is 

important to understand how the entropy changes with the shape and mean value of the constraint distribution. In the case of the 

uniform distribution discussed above, the entropy is given by: 
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 Evaluating this function, as shown in Figs. (4 and 5), the variation in the entropy when the mean value of the distribution 

2

y y
+
+

changes (Fig. 4) is more than ten times greater than the variation in entropy when the width of the distribution y y
+  

is varied and the mean value is kept constant (Fig. 5). This parallels the poor ability to detect signal with different distribution 

shapes.  

 Studying the ability of this method to detect simulated signals sheds more light on its advantages and disadvantages. The 

goal of these simulation studies is to determine whether a test signal is better described by one or another set of constraints (H0 

and H1). In each simulation the constraint functions will be those of equation (B2) with the simplified form: 
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 In each simulation, the test signal was 1000 samples in size with each sample point chosen randomly from the maximum 

entropy distribution associated with the constraints given by 1

2
1;

C
C

n
= . The Neyman-Pearson decision test with =0.05 was 

applied to each signal. 100 different signals with C2 chosen as a random variable from the above distribution were analyzed and 

the percentage of signals classified as more likely to fit the constraints H0 as a function of the mean value μ when =0.1. In 

addition, Student’s t-test is used to compare the test signal to the mean value expected under H0 and the average probability of 

the test signal having this mean value is computed over all of the test signals. Fig. (6a) shows that when the mean value of the 

test signal is more than 0.0 the probability of assigning the signal to H0 is less than 10%. Fig. (6b) demonstrates that this is 

roughly the point at which Student’s t-test indicates a less than 0.05 probability that the test signal has a mean value equal to 

that under H0. In this case, the traditional t-test performs similarly to the detector described above.  

 A second simulation reveals the flexibility of the detector described above. Consider the case in which the distributions of 

the two comparison signals are given by  
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 And the test signal is governed by the distribution: 
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     a       b 

Fig. (6). a. The results of a simulation study with the distributions characterizing hypotheses H0 (mean=-0.1) and H1 (mean=0.3) as shown in 

equation (B22). μ is the mean value of the test signal. Probability is the chance that the Neyman-Pearson decision criterion (37) identifies the 

test signal as coming from the constraints in H1. This shows that the algorithm detects the signal as not belonging to H0 when the mean of the 
test signal significantly exceeds the mean of H0 as expected. The mean value of the square of the signal is the same in all cases.  

b. The results of a simulation study with the distributions characterizing hypotheses H0 (mean=-0.1) and H1 (mean=0.3) as shown in equation 

(B22). μ is the mean value of the test signal. Probability is the chance computed from the Student’s t-test that the test distribution comes from 

distribution H0. It is important to note that as μ increases past the mean value of the signal in H0, the point at which the probability that this 

signal belongs to H0 becomes less than 0.05 is the same value at which the maximum entropy detector begins to assign most of the test sig-
nals to H1. The mean value of the square of the signal is the same in all cases. 

while C1 takes on varying values. Fig. (7) demonstrates that the test signal is reliably detected as not from H0 whenever C1 is 

greater than 1.1 for any mean value. All of these results could not be explained by use of the Student’s t-test because this test is 

only sensitive to changes in the mean values of the time series. The maximum entropy detector is sensitive to both changes in 

mean and variance.  

 

Fig. (7). In this simulation, probability is the chance that the Neyman-Pearson detection criteria selects the test signal as more likely coming 

from H1 than H0. This simulation differs from the simulation used in Figs. 6a and 6b in that the mean square of the signals differs in H1 and 

H0 and the test signal is drawn from the distribution (B24) in which the mean and mean square of the signal is allowed to vary. This demon-
strates that small variations in the square of the signal value produce large changes in the distribution. 
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